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Abstract

We study the linear stability of a thin viscoelastic liquid film under the influence of van der
Waals interaction. The Jeffreys model is used to describe the viscoelasticity effects with a
relaxation time and a retardation time. We study the governing thin film approximation that
describes the nonlinear evolution in time of the interface in the long-wave limit. We are inter-
ested in the instability that causes the dewetting of the liquid on a substrate. We include the
dewetting effect through the van der Waals attractive-repulsive force. The analysis is also car-
ried out considering the fluid in the transition from weak to moderate to strong slip regimes. In
each regime, the role in the break-up of the liquid viscoelasticity as well as the contact angle
or the slippage are studied. Numerical simulations of the nonlinear model are implemented
and compared with the theoretical results given by the linear stability analysis.

Introduction

We simplify the generalized Maxwell model of Jeffreys type for the moving interface of vis-
coelastic liquids in the 2D lubrication approximation. This model describes the non-Newtonian
nature of the stress tensor interpolating a purely elastic and a purely viscous behavior, char-
acterized by two time constants λ1 and λ2 respectively, namely relaxation time and retardation
time. We study the effects of the perturbation of a thin film of fluid in the presence of van der
Waals forces. Our investigations are motivated by applications of thin polymer films as in
semi-conductors, solar cells, etc. We carry out our analysis in regimes that transit from weak
to strong-slip and see how the slippage together with the viscoelasticity affect the instability. A
thin film of fluid of constant initial thickness h0 is perturbed and the linear stability analysis on
the governing equation describes whether the film breaks up into separate rims (instability) or
returns to its initial configuration (stability). We drive numerical simulations of the highly non
linear model in the case of no slip or weak-slip and absence of viscosity and compare them
with the theoretical analysis.

Figure 1: An application of a thin polymeric liquid film.Picture from www.foodproductiondaily.com - MIT research.

Governing Equations

The equation governing the hydrodynamics for the fluid interface of viscoelastic media is de-
rived as a long-wave approximation of the conservation laws. The liquid is considered in-
compressible, with mass density ρ. The equation of conservation of mass and continuity of
momentum are:

∇ · u = 0 ,

ρ (∂tu + u · ∇u) = −∇pR +∇ · τ ,

where u = (u, v, w) is the velocity vector field, and pR the reduced pressure such that
pR = p − Π, where p is the hydrostatic pressure, while Π is the pressure induced by body
forces of van der Waals type (attractive or repulsive). The stress tensor τ follows the Jeffreys
model for viscoelastic fluids, which describes the nonlinear relation τ (γ̇) between the stress
tensor τ and the strain rate γ̇:

τ + λ1∂tτ = η(γ̇ + λ2∂tγ̇) (1)

in which η is the shear viscosity coefficient and λ1, λ2 are the two relaxation times of the liquid
when it shrinks back to its original shape after deformation, with generally λ1 > λ2.
In figure 2 we can see a scheme of the fluid’s interface. At the solid
substrate we have Navier boundary conditions where b ≥ 0 is the slip
length (b = 0 means no slip, and b � 1 means strong-slip).
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Figure 2: Scheme of the fluid interface and boundary conditions.

We nondimensionalize these equations, using:

(x, y) = L(x∗, y∗), z = Hz∗, (u, v) = U(u∗, v∗), w = εUw∗

t = Tt∗ , with T =
L

U
and

H

L
= ε ,

where ε is the small parameter. In the weak-slip regime the slip length b = O(1) and the pres-
sure is scaled as PH/ηU ∼ ε−1 [4].
Keeping only O(1) terms in the boundary conditions we obtain pR = −∇2h−Π, and using this
together with the kinematic boundary condition into the governing equations (dropping the ?)
leads to the closed form equation for the fluid’s interface:

(1 + λ2∂t)ht + (λ2 − λ1)∇ ·
[(
h2

2
Q− hR

)
ht

]
=

∇ ·
{[

( +λ1∂t)
h3

3
∇pR + (1 + λ2∂t)bh

2∇pR
]}

(2)

where Q and R satisfy

Q + λ2Qt = ∇pR, R + λ2Rt = h∇pR

and the van der Waals potential is defined by:

Π(h) =
σ(1− cosθ)

Mh?

[(
h?
h

)n
−
(
h?
h

)m]
,

with θ the contact angle, M = (n−m)/[(m− 1)(n− 1)] (generally n > m) [2], and σ the surface
tension.

Linear Stability Analysis

To study the film’s response to a perturbation we consider h = h0 + δh0e
ikx+ωt, Q = δQ1,

R = δR1, where h0 is the flat initial thickness, k the wave number k = 2π/λ, and ω the growth
rate. Using these into equation (2) and keeping only terms up to O(δ), we obtain the following
disperion/dissipation relation:

λ2ω
2 +

[
1 + (k4 − k2Π′(h0))

(
λ1
h3

0

3
+ λ2bh

2
0

)]
ω + (k4 − k2Π′(h0))

(
h3

0

3
+ bh2

0

)
= 0 .

(3)

Solving for the two roots of this quadratic equation we obtain one root strictly negative, let
us say ω2, and one root with varying sign, call it ω1. The latter one is positive (unstable) for
−
√

Π′(h0) < ω1 <
√

Π′(h0). The most unstable mode is given by km = ±
√

Π′(h0)/2. Therefore
from the definition above we can see that both kc = ±

√
Π′(h0) and km do not depend on the

viscoelasticity times λ1 and λ2 and neither on the slip length b.

Numerical Results

We developed simulations of the evolution of the film in the 1D case of absence of viscosity,
where the equation (2) governing the motion of the free surface of the liquid reduces to:

ht −
λ1

2

∂

∂x

[
h2 (hxxx + Π′(h)hx)ht

]
+
∂

∂x

[(
h3

3
+ bh2

)
(hxxx + Π′(h)hx) + λ1

∂

∂t

(
h3

3
(hxxx + Π′(h)hx)

)]
= 0 .

The numerical method uses Newton linearization of the nonlinear term and (implicit) Crank-
Nicolson and central finite differences for the spacial derivatives [3].

x

0 5 10 15 20

h

0.5

1

1.5

2

2.5
h for b = 0

h for b = 0.03

h for b = 0.5

( a )
x

0 0.5 1 1.5 2 2.5

h

0.05

0.1

0.15

0.2

0.25 h for λ1 = 10−5

h for λ1 = 10−3

h for λ1 = 10−2

( b )

x

0 0.5 1 1.5 2 2.5

h

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
h for λ1 = 10−5

h for λ1 = 10−3

h for λ1 = 10−2

( c )
k

0 0.1 0.2 0.3 0.4 0.5

ω

×10-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

(0.2, 5.39e-04)      
  (0.276, 6.65e-04) 

  (0.39, 7.36e-06)     

   (0.45, -1.16e-03)   

( d )

Figure 3: (a), (b) and (c): Fluid’s interface instability - transition from no slip to weak-slip
regime with different values of relaxation times -; (d): Growth rate of interfacial instability
given by the numerical simulations compared with the theoretical LSA.

In figure 3(a) we see the evolution in time of a film of initial thickness h0 = 0.1: the liquid’s in-
terface is perturbed and it does not returns to its flat profile, but it breaks up into two separate
rims. The instability is due to van der Waals forces’ interaction with a precursor film h? = 0.01
and contact angle θ = 45◦. In figure 3(b) and 3(c) we see the final film’s interface configuration
for different values of relaxation time λ1 for fixed initial height h0 and h? = 0.01 and b = 0 and
b = 0.1 respectively. In figure 3(d) instead we compare the growth rates of the instabilities for
different wave lengths with the theoretical results given by the Linear Stability Analysis.

Conclusions and Future Work

The numerical results of our simulations are in agreement with the linear stability analysis.
In our future work we will implement the full nonlinear equation (2) in the weak-slip regime
and investigate how the transition from weak to moderate to strong-slip regimes affects the
instability together with the viscoelastic effects.
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