GP-GPU Programming

INTRODUCTION TO CUDA

Agenda

Why GPUs?

Parallel Processing
CUDA

Example

GPU Memory
Advanced Techniques
Issues

Conclusion

Why GPUs?

= Moore's Law
Concurrency, not speed
Hardware support

= Memory bandwidth
* Programmability

Why GPUs?

TECHNICAL SPECIFICATIONS

Peak double precision floating point
performance (board)

Image from: CUDA Programming Guide

0.19 teraflops

1.17 teraflops

A

1.31 teraflops

Peak single precision floating point
performance (board)

4.58 teraflops

3.52 teraflops

3.95 teraflops

Number of GPUs

2 x GK104s

1x GK110

Number of CUDA cores

2x 1536

2496

268@

Memory size per board (GDDR5)

8 GB

5GB

6 GB

Memory bandwidth for board (ECC off)®

320 GBytes/sec

208 GBytes/sec

250 GBytes/sec

GPU computing applications

Seismic, image, signal
processing, video analytics

CFD, CAE, financial computing, computational chemistry
and physics, data analytics, satellite imaging, weather

modeling

Architecture features

SMX

SMX, Dynamic Parallelism, Hyper-Q

System

Servers only

Servers and Workstations

Servers only

2 Tesla K10 specifications are shown as aggregate of two GPUs.
b With ECC on, 12.5% of the GPU memory is used for ECC bits. So, for example, é GB total memory yields 5.25 GB of user available memory with ECC on.

Why GPUs?

Raw computing power
Cost ($ per FLOP)
Ubiquitous

Stable — Graphics & Games
Practical (space, noise, power)
Power (performance per watt)

Parallel Processing

Shared Memory
Multi-core
Multi-socket

Distributed Memory
Clusters
LCFs
Accelerators
GPUs
FPGAS

Asynchronous Operations

Parallel Processing

= Example: Reduction

Parallel Processing

= Example: Reduction

R

= Each processor does a portion
= Sync

= Repeat

Parallel Processing

= How is this done in different parallel
architectures?
Distributed Memory
Shared Memory
GPU
FPGA?

Parallel Processing

= What is the problem with all of these
solutions?

Parallel Processing

= What is the problem with all of these
solutions?

= Communication

* Memory

CUDA (Compute Unified Device
Architecture)

= Single Instruction Multiple Data (SIMD)

Each processor executes the same instruction, at
the same time

Each processor operates on different data
Thousands of concurrent threads
Hardware support
Reduced functionality cores
_imited number of functional units
Quickly evolving

)]
2

GPU Architecture

‘l||
‘||

i|

= Cores are organized into
SMs (streaming
multiprocessors)

= Multiple SMs per GPU

= Certain elements are shared
on and SM:

Special function units

Double precision units

Register file

Image from http://benchmarkreviews.com/index.php?
option=com_content&task=view&id=440&Itemid=63&limit=1&Ilimitst

CUDA - Threads &
Threadblocks

Individual execution units are called threads.

Threads are also grouped into warps and half-
warps.

A warp — 32 threads
Threads are grouped into thread blocks.
Thread blocks are grouped into a grid.

Functions that execute on the GPU are called
kernels.

No communication between thread blocks

CUDA - Threads &
Th r\eadbloc kS Image from: CUDA Programming Guide

Device

Grid 1

Kernel 1 . Block
(o, 0)

Block .°
(o, 1)

Kernel 2

Block (1, 1)

Thread
(2, 0)

Thread
(2,1)

Thread
(2, 2)

CUDA - Threads &
Threadblocks

Threada Thread2 Thread3 Thready

CUDA First Example

= Vector Addition:

/| Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)

{
int i ={threadldx.x;

CLi] =Al] + BLIJ;
5

CUDA First Example Revisited

/| Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)

{

int#®&=hlockldx.x * blockDim.x + threadldx.x:
C[i] = A[i] + B[i];
5

CUDA Second Example

* Previous examples all 1D thread blocks and
grid —what about 2D data?

CUDA Second Example

* Previous examples all 1D thread blocks and
grid —what about 2D data?

. Grid

| Block (0, 0) Block (1, 0) @ Block (2, 0)

RS s s

| [Block (0, 1) Block (1, 1) “-Block (2, 1)

"
B R e
~
= ~
b ~
-
N -~
- -~

Block (1, 1)

Image from: CUDA Programming Guide

CUDA Second Example: Matrix
Addition

= Matrices are two dimensional

/| Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{

int i = blockldx.x * blockDim.x + threadldx.x;

int j = blockldx.y * blockDim.y + threadldx.y;

if i<N&&j<N)

CLilLj] = ALL] + BLILY;

}

GPU Memory

Probably the biggest difference from
traditional CPUs

High bandwidth — but only if accessed
correctly

Lots of restrictions

May be one of the biggest obstacles to
adoption

GPU Memory

= Different regions:
Registers
Global
Shared
Wole]
Texture
Constant

GPU Memory

Muitiprocessor 1
Thread “ Thread

Registers | Regsters

Multiprocessor N

Shared Memory

Thread Thread
Ragisters [Regsters

Shared Memory

Constant Cache

Constant Cache

Texture Cache
n

Texture Cache

Local Locs
Mamory Mamory

LOoCH
Mamary

Image from: http://people.sc.fsu.edu/~jburkardt/latex/fdi_2009/
gpu_memory.png

GPU Memory - Global

Similar to RAM on CPU
~urthest memory from the cores
_ong memory access latency

Data transferred to/from host lives here
Access should be regular

| GPU Memory - Global

= Number of aligned memory transactions for
each version of CUDA HW.

Aligned and sequential

128 160 192 224 256 288

I

Threads: 0

Compute capability: 1.0 and 1.1 1.2 and 1.3 2.x and 3.0
Memory transactions: Uncached Cached

1x 64Bat128|1x 64Bat128|1x128B at 128
1x 64Bat192|1x 64Bat 192

Image from CUDA Programming Guide

| GPU Memory - Global

= Number of aligned non-sequential memory
transactions for each version of CUDA HW.

Aligned and non-sequential

128 160 192 224 256 288

X

Threads: 0

Compute capability: 1.0 and 1.1 1.2and 1.3 2.x and 3.0
Memory transactions: Uncached Cached

32Bat128|1x 64Bat128|1x128Bat 128
32Bat160|1x 64Bat 192
32B at 192
32B at 224

Image from CUDA Programming Guide

GPU Memory - Global

= Number of misaligned non-sequential
memory transactions for each version of
CUDA HW.

Misaligned and sequential

128 160 192 224

256 288

Threads:

i

Compute capability:

1.0and 1.1 1.2and 1.3

2.x and 3.0

Memory transactions:

Uncached

Cached

7x 32Bat128|1x128Bat 128
8x 32Bat160|1x 64Bat 192
8x 32Bat192|1x 32B at 256

8x 32Bat 224
1x 32B at 256

1x128B at 128
1x128B at 256

Image from CUDA Programming Guide

GPU Memory - Registers

On-chip
-ast access
No latency

-inite size
Shares space with shared memory
Mostly managed by compiler

GPU Memory - Shared

On-chip (SM), very fast
User managed cache
Required below compute capability <1.2

Explicit use in later versions still
recommended

Shares space with register file
Perfect for repeatedly accessed data
Example?

GPU Memory - Shared Example:
Matrix Multiplication

b w
N
n
xI
B

vm
w

[
")
xl
E
o

BLOCK_SIZE

< > < > 4+—>
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE

A.width B.width
> <

GPU Memory - Local

A special name for certain values in global
memory

Values too big to fit in register file
Non-determinately sized arrays
Too many registers used

Extremely detrimental to performance

GPU Memory - Constant

Fast, on-chip memory region for read-only
values

Small

Coalescence is different: all threads must
access same value

Useful for constants, or small read-only data

GPU Memory - Texture
(Briefly)

= Comes from graphics operations

= Cached reads
= Cache writes not coherent
= Spatial locality is important

= Certain hardware assisted operations
(interpolation)

GPU Memory - Latency

» Global memory accesses take several
hundred cycles

= Once a warp makes a request to global
memory it is swapped out and the next warp
is loaded in

= By the time the time all warps have made a
request the data for the first request will have
arrived and the first warp can continue

GPU Memory - Latency

= GPU device must be saturated
* There must be enough work to do
» Hide latency

Advanced Techniques

Atomic operations
Memory bound kernels
Arithmetic intensity
Redundancy calculations
Memory halos

Index calculations
Memory shape

Advanced Techniques - Atomic
Operations

Back to the reduction

Every step cuts the data size by half
Multiple threads write to same location
Serializes execution

Use with Care

// Thread zero of each block signals that it is done

unsigned int value = atomiclnc(&count, gridDim.x);

Advanced Techniques -
Metrics

= Useful metrics to determine performance

= FLOPs per read
= How many times is each global memory value

used?

Bus utilization

Memory transactions sometimes transmit more
bytes than required on the bus

Want to minimize number of unused bytes across
the bus

Advanced Techniques - Index
Calculations

= Recall 2-D case:

int i = blockldx.x * blockDim.x + threadldx.x;
int j = blockldx.y * blockDim.y + threadldx.y;

= Approximately 15 instructions for each index
= This is calculated for every thread

= For 1M data elements, 15M instructions just
for indices

Advanced Techniques - Index
Calculations

After first index calculation (15 instructions),
calculate another, relative to the first, with a
single instruction

int i = blockldx.x * blockDim.x + threadldx.x;
intj =i+ BLOCK_DIM

Now two indices calculated for 16 instructions
15M down to 8M instructions
Approximately 44% reduction

Issues

PCIl Express Bus
Memory access

Bus utilization
Arithmetic intensity

Optimization is difficult

Conclusion

Serious performance improvements possible

Requires certain data organization and
algorithms

Fits into other parallel methodologies
Non-trivial implementation

Constantly evovling

Questions?

