GP-GPU Programming

INTRODUCTION TO CUDA

Agenda

- Why GPUs?
- Parallel Processing
- CUDA
- Example
- GPU Memory
- Advanced Techniques
- Issues
- Conclusion

Why GPUs?

- Moore's Law
 - Concurrency, not speed
 - Hardware support
- Memory bandwidth
- Programmability

Why GPUs?

TECHNICAL SPECIFICATIONS	TESLA K10°	TESLA K20	TESLA K20X
Peak double precision floating point performance (board)	0.19 teraflops	1.17 teraflops	1.31 teraflops
Peak single precision floating point performance (board)	4.58 teraflops	3.52 teraflops	3.95 teraflops
Number of GPUs	2 x GK104s	1 x GK110	
Number of CUDA cores	2 x 1536	2496	2688
Memory size per board (GDDR5)	8 GB	5 GB	6 GB
Memory bandwidth for board (ECC off) ^b	320 GBytes/sec	208 GBytes/sec	250 GBytes/sec
GPU computing applications	Seismic, image, signal processing, video analytics	CFD, CAE, financial computing, computational chemistry and physics, data analytics, satellite imaging, weather modeling	
Architecture features	SMX	SMX, Dynamic Parallelism, Hyper-Q	
System	Servers only	Servers and Workstations	Servers only

^a Tesla K10 specifications are shown as aggregate of two GPUs.
^b With ECC on, 12.5% of the GPU memory is used for ECC bits. So, for example, 6 GB total memory yields 5.25 GB of user available memory with ECC on.

Why GPUs?

- Raw computing power
- Cost (\$ per FLOP)
- Ubiquitous
 - Stable Graphics & Games
- Practical (space, noise, power)
- Power (performance per watt)

- Shared Memory
 - Multi-core
 - Multi-socket
- Distributed Memory
 - Clusters
 - LCFs
- Accelerators
 - GPUs
 - FPGAs
- Asynchronous Operations

Example: Reduction

Example: Reduction

- Each processor does a portion
- Sync
- Repeat

- How is this done in different parallel architectures?
 - Distributed Memory
 - Shared Memory
 - GPU
 - FPGA?

• What is the problem with all of these solutions?

- What is the problem with all of these solutions?
- Communication
- Memory

CUDA (Compute Unified Device Architecture)

- Single Instruction Multiple Data (SIMD)
 - Each processor executes the same instruction, at the same time
 - Each processor operates on different data
- Thousands of concurrent threads
- Hardware support
- Reduced functionality cores
- Limited number of functional units
- Quickly evolving

GPU Architecture

- Cores are organized into SMs (streaming multiprocessors)
- Multiple SMs per GPU
- Certain elements are shared on and SM:
 - Special function units
 - Double precision units
 - Register file
 - Caches
 - Texture elements

Image from http://benchmarkreviews.com/index.php? option=com_content&task=view&id=440&Itemid=63&Iimit=1&Iimitst art=4

CUDA - Threads & Threadblocks

- Individual execution units are called threads.
 - Threads are also grouped into warps and half-warps.
 - A warp 32 threads
- Threads are grouped into thread blocks.
- Thread blocks are grouped into a grid.
- Functions that execute on the GPU are called kernels.
- No communication between thread blocks

CUDA - Threads & Threadblocks Image

CUDA - Threads & Threadblocks

CUDA First Example

Vector Addition:

```
// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
  int i = threadIdx.x:
    C[i] = A[i] + B[i];
}
```

CUDA First Example Revisited

```
// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
   int i = blockIdx.x * blockDim.x + threadIdx.x:
   C[i] = A[i] + B[i];
}
```

CUDA Second Example

Previous examples all 1D thread blocks and grid – what about 2D data?

CUDA Second Example

Previous examples all 1D thread blocks and grid – what about 2D data?

CUDA Second Example: Matrix Addition

Matrices are two dimensional

```
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  int j = blockIdx.y * blockDim.y + threadIdx.y;
  if (i < N && j < N)
        C[i][j] = A[i][j] + B[i][j];
}</pre>
```

GPU Memory

- Probably the biggest difference from traditional CPUs
- High bandwidth but only if accessed correctly
- Lots of restrictions
- May be one of the biggest obstacles to adoption

GPU Memory

- Different regions:
 - Registers
 - Global
 - Shared
 - Local
 - Texture
 - Constant

GPU Memory

Image from: http://people.sc.fsu.edu/~jburkardt/latex/fdi_2009/gpu_memory.png

- Similar to RAM on CPU
- Furthest memory from the cores
- Long memory access latency
- Data transferred to/from host lives here
- Access should be regular

 Number of aligned memory transactions for each version of CUDA HW.

 Number of aligned non-sequential memory transactions for each version of CUDA HW.

 Number of misaligned non-sequential memory transactions for each version of CUDA HW.

GPU Memory - Registers

- On-chip
- Fast access
- No latency
- Finite size
- Shares space with shared memory
- Mostly managed by compiler

GPU Memory - Shared

- On-chip (SM), very fast
- User managed cache
- Required below compute capability < 1.2
- Explicit use in later versions still recommended
- Shares space with register file
- Perfect for repeatedly accessed data
- Example?

GPU Memory - Shared Example: Matrix Multiplication

GPU Memory - Local

- A special name for certain values in global memory
- Values too big to fit in register file
- Non-determinately sized arrays
- Too many registers used
- Extremely detrimental to performance

GPU Memory - Constant

- Fast, on-chip memory region for read-only values
- Small
- Coalescence is different: all threads must access same value
- Useful for constants, or small read-only data

GPU Memory - Texture (Briefly)

- Comes from graphics operations
- Cached reads
- Cache writes not coherent
- Spatial locality is important
- Certain hardware assisted operations (interpolation)

GPU Memory - Latency

- Global memory accesses take several hundred cycles
- Once a warp makes a request to global memory it is swapped out and the next warp is loaded in
- By the time the time all warps have made a request the data for the first request will have arrived and the first warp can continue

GPU Memory - Latency

- GPU device must be saturated
- There must be enough work to do
- Hide latency

Advanced Techniques

- Atomic operations
- Memory bound kernels
- Arithmetic intensity
- Redundancy calculations
- Memory halos
- Index calculations
- Memory shape

Advanced Techniques - Atomic Operations

- Back to the reduction
- Every step cuts the data size by half
- Multiple threads write to same location
- Serializes execution
- Use with Care

//Thread zero of each block signals that it is done unsigned int value = atomicInc(&count, gridDim.x);

Advanced Techniques -Metrics

- Useful metrics to determine performance
- FLOPs per read
- How many times is each global memory value used?
- Bus utilization
 - Memory transactions sometimes transmit more bytes than required on the bus
 - Want to minimize number of unused bytes across the bus

Advanced Techniques – Index Calculations

Recall 2-D case:

```
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
```

- Approximately 15 instructions for each index
- This is calculated for every thread
- For 1M data elements, 15M instructions just for indices

Advanced Techniques - Index Calculations

- After first index calculation (15 instructions), calculate another, relative to the first, with a single instruction
 - int i = blockIdx.x * blockDim.x + threadIdx.x;
 - int j = i + BLOCK_DIM
- Now two indices calculated for 16 instructions
- 15M down to 8M instructions
- Approximately 44% reduction

Issues

- PCI Express Bus
- Memory access
- Bus utilization
- Arithmetic intensity
- Optimization is difficult

Conclusion

- Serious performance improvements possible
- Requires certain data organization and algorithms
- Fits into other parallel methodologies
- Non-trivial implementation
- Constantly evovling

